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Abstract
We investigate resonant tunnelling through molecular states of an Aharonov–
Bohm (AB) interferometer composed of two coupled quantum dots. The
conductance of the system shows two resonances associated with the bonding
and the antibonding quantum states. We predict that the two resonances are
composed of a Breit–Wigner resonance and a Fano resonance, of which the
widths and Fano factor depend on the AB phase very sensitively. Further, we
point out that the bonding properties, such as the covalent and ionic bonding,
can be identified by the AB oscillations.

(Some figures in this article are in colour only in the electronic version)

While single quantum dots are regarded as artificial atoms due to their quantization of
energies [1, 2], two (or more) quantum dots can be coupled to form an artificial molecule [3].
Resonant tunnelling through serially coupled quantum dots provides some information on the
coupling between dots [4], but the phase coherence of the bonding cannot be directly addressed
in this geometry. Aharonov–Bohm (AB) interferometers containing a quantum dot in one of
the two arms enables the investigation of the phase coherent transmission through a quantum
dot [5–7]. The phase coherence of the Kondo-assisted transmission has also been studied in
this geometry [8–14]. Recently, an AB interferometer set-up containing two coupled quantum
dots has been realized [15]. This can be considered as the beginning point in the study of
the experimentally unexplored region where various aspects of a double dot molecule can be
investigated by probing the phase coherence. There are some previous theoretical works on the
AB interferometer containing two quantum dots. Resonant tunnelling [16], cotunnelling [17],
Kondo effect [18] and magnetic polarization current [19] have been the topics of study of the
system in the absence of direct coupling between the two dots. Two-electron entanglement
in the presence of direct tunnelling between the dots has also been studied [20] in relation to
quantum communication.

In this paper, we study phase-sensitive molecular resonances in an Aharonov–Bohm
interferometer made of two coupled quantum dots. The geometry we consider is schematically
drawn in figure 1 and is equivalent to the experimental set-up of [15]. We find that the
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Figure 1. Schematic diagram of double quantum dots embedded in an Aharonov–Bohm
interferometer.

conductance of the system consists of two molecular resonances, associated with the bonding
and the antibonding quantum states. By careful analysis of the conductance as a function of
energy, we argue that the two resonances are always composed of a Breit–Wigner resonance
and a Fano resonance, with those widths and Fano factor depending very sensitively on the
AB phase. Further, we point out that the bonding properties, such as the covalent and ionic
bonding, can be characterized by the AB oscillations.

Our model is described by the following Hamiltonian:

H = HM + H0 + HT, (1a)

where HM, H0 and HT stand for the artificial molecules of double quantum dots, two electrical
leads and tunnelling between the leads and the quantum dots, respectively. For the molecule,
we consider coupled non-interacting quantum dots of energies ε1, ε2 with a tunnelling matrix
element t between them:

HM = ε1d†
1 d1 + ε2d†

2 d2 − t (d†
1 d2 + d†

2 d1), (1b)

where di (d†
i ) with i = 1, 2 annihilates (creates) an electron in the i th dot. The bonding

properties depend on the ratio of the energy difference of the quantum dot levels (�ε ≡ ε1−ε2)
and the level splitting due to tunnelling (2t). The molecular bonding can be called ‘covalent’
for |�ε| � 2t , where the eigenstates of the electrons are delocalized. On the other hand, the
molecule is considered to be in the ‘ionic’ bonding limit for |�ε| � 2t , where the eigenstates
are localized in one of the two dots [3]. H0 describes the two (left and right) electrical leads
modelled by the Fermi sea as

H0 =
∑

k∈L

EL
k a†

k ak +
∑

k∈R

ER
k b†

kbk, (1c)

where ak (a†
k ) and bk (b†

k ) annihilates (creates) an electron in the left and one in the right
leads, respectively. These two leads are assumed to be identical (Ek ≡ EL

k = ER
k ). Finally,

tunnelling between the leads and the molecule is described by

HT = −
∑

k,i=1,2

(V i
Ld†

i ak + H.c.) −
∑

k,i=1,2

(V i
Rd†

i bk + H.c.). (1d)

For simplicity, we assume that the magnitudes of the tunnelling matrix elements of the four
different arms are the same (denoted by V ). Then the matrix elements can be written as
V 1

L = V 2
R = V eiϕ/4, V 2

L = V 1
R = V e−iϕ/4. ϕ represents the AB phase defined as ϕ = 2π�/�0

where � and �0 are the external flux through the interferometer and the flux quantum (=hc/e),
respectively. The hopping strength between a quantum dot and a lead is denoted by �, defined
as

� = 2πρ(EF)V 2, (2)

where ρ(EF) stands for the density of states of each lead at the Fermi level, EF.
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The Hamiltonian is transformed by using the symmetric and antisymmetric modes of the
leads and the quantum dots. Below it will become obvious that this approach provides better
insights into the problem. Let us consider the transformations of electron operators:

αk = (ak + bk)/
√

2, βk = (ak − bk)/
√

2, (3a)

dα = (d1 + d2)/
√

2, dβ = i(d1 − d2)/
√

2. (3b)

Note that, for ε1 = ε2, dα and dβ correspond to the annihilation operator of the bonding and
the antibonding modes. By adopting this transformation we can rewrite the Hamiltonian as
follows:

H = Hα + Hβ + Hαβ, (4a)

where Hα, Hβ take the simple form of the Fano–Anderson Hamiltonian [21] (γ = α, β):

Hγ = ε̃γ d†
γ dγ +

∑

k

Ekγ
†
k γk + Vγ

∑

k

(d†
γ γk + γ

†
k dγ ). (4b)

The energy eigenvalues of the two ‘quantum dot’ modes in the transformed Hamiltonian are
given by ε̃α = ε0 − t , ε̃β = ε0 + t , where ε0 = (ε1 + ε2)/2. The hybridization matrix elements
depend on the AB phase as Vα = −2V cos (ϕ/4) and Vβ = −2V sin (ϕ/4). The coupling
between two modes is given by

Hαβ = −t̄d†
αdβ − t̄∗d†

βdα, (4c)

with the ‘tunnelling’ matrix element being proportional to the difference of the energy levels
of the two quantum dots, t̄ = i(�ε)/2. It is important to note that the coupling term given
in equation (4c) vanishes for ε1 = ε2. In other words, for the same single-particle energies
of the two dots, the original Hamiltonian is mapped onto the problem of two independent
Fano–Anderson Hamiltonians.

In the representation of the transformed Hamiltonian (equation (4a)) the dimensionless
conductance can be written as [22]

G = 1
4 |�αGα(EF) − �β Gβ(EF)|2 + �α�β |Gαβ(EF)|2, (5)

where �α and �β stand for the hopping strengths between the discrete level and the continuum
of each mode, given by �α = 2� cos2 (ϕ/4) and �β = 2� sin2 (ϕ/4), respectively. Gα(EF)

(Gβ(EF)) and Gαβ(EF) denote the diagonal and the off-diagonal components of the 2 × 2
Green function matrix. After some algebra for the Green functions we obtain a very compact
form of the conductance:

G = (eβ − eα)
2 + 4�

|(−eα + i)(−eβ + i) − �|2 , (6a)

where

eα,β ≡ 2

�α,β

(ε̃α,β − EF), (6b)

� ≡ 4|t̄|2
�α�β

= (�ε)2

�α�β

. (6c)

Note that equation (6a) reduces to the one obtained in [16] in the absence of direct coupling
between two quantum dots (t = 0).

First we discuss the covalent bonding limit, ε1 = ε2. This limit is very instructive in
providing insights into the problem, since the coupling term in the Hamiltonian (4) vanishes.
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In this limit Hαβ = 0 and it is clear that the transport is associated with two resonances of
widths �α and �β . Thus the conductance reduces to

G = (eβ − eα)2

(e2
α + 1)(e2

β + 1)
. (7)

In the following we argue that for ε1 = ε2 the conductance consists of the convolution
of a Breit–Wigner resonance and a Fano resonance of the two molecular (the bonding and
antibonding) states. Since the hopping parameters �α , �β are sensitive to the AB phase, the
relative strength of the resonant widths can be manipulated by the AB flux. Let us consider the
limit �α � �β . For the energy scale larger than �β (|eβ | � 1), the conductance of equation (7)
follows the Breit–Wigner form of its width �α:

G � GBW = 1

e2
α + 1

. (8)

On the other hand, one can find that the conductance shows the Fano-resonance behaviour near
the antibonding state (|eβ | � 1):

G � GFano = Gb
(eβ + q)2

e2
β + 1

, (9)

where the Fano factor q and the background conductance Gb are given by q = 4t/�α and
Gb = 1/(q2 + 1), respectively. From this analysis we find that the conductance is composed of
a Breit–Wigner resonance for the bonding state (ε̃α) with its resonance width �α and a Fano
resonance for the antibonding state (ε̃β) of width �β , if �α � �β . Further information is
obtained from the Fano factor q . For t = 0 the conductance shows an antiresonance behaviour
(q = 0), while it becomes more Breit–Wigner-like (large q) as the inter-dot coupling increases.
For the other limit �α � �β , the same analysis is applied with the role of the bonding and
antibonding states interchanged and the Fano factor given by q = −4t/�β . That is, for
�α � �β , the conductance consists of the Breit–Wigner resonance for the antibonding state
and the Fano resonance near the bonding state.

Figure 2 shows the conductance as a function of the Fermi energy for three different values
of t/�. The curve demonstrates the features described above, which follows the Breit–Wigner
and Fano asymptotes for the larger and for the smaller widths of the resonances, respectively.
For ϕ = 0.3π used in figure 2, �α � �β . Therefore the conductance shows Breit–Wigner
behaviour for the bonding state (EF � ε̃α) and Fano resonance for the antibonding state
(EF � ε̃β). One can also verify that the Fano factor (q) increases as the bonding becomes
stronger. The resonance shape for the antibonding state varies gradually from the anti-
resonance for weak bonding (small q) to the Breit–Wigner-like resonance for strong bonding
(large q).

Next, we investigate the more general case where ε1 �= ε2. The same kind of analysis as
for the resonances can be applied here, with the Fano resonance modified. We discuss the limit
�α � �β , not losing generality. For an energy scale larger than �β , the conductance takes the
Breit–Wigner form of equation (8), as in the ε1 = ε2 case. However, the conductance near the
narrower resonance (|eβ | � 1) is modified as

G � G′
Fano = Gb

|e′
β + Q|2
e′2
β + 1

, (10a)

where

e′
β = (eβ + Gb�q)/(1 + Gb�), (10b)
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Figure 2. Dimensionless conductance (G) as a function of the Fermi energy (full curves) for
three different values of the inter-dot tunnelling (t/� = 0, 0.2, 1). Other parameters are given
by ε1 = ε2 = 0, ϕ = 0.3π . Long and short dashed curves denote the Breit–Wigner and Fano
asymptotes given in equations (8) and (9), respectively. The Fano factors for the Fano asymptotes
are given by q = 0, 0.423 and 2.115 for t/� = 0, 0.2, 1, respectively.

and the modified Fano factor given by

Q = q
1 − Gb�

1 + Gb�
+ i

2
√

�

1 + Gb�
. (10c)

Equation (10a) can be regarded as a generalized Fano resonance formula with the complex
Fano factor Q. As pointed out in [23], the Fano factor is a complex number in the absence
of time reversal symmetry, for example by applying an external magnetic field. This point
was addressed experimentally with an AB interferometer containing a single quantum dot [7].
Note that the Fano factor in equation (10c) reduces to a real number in the absence of the
magnetic field, because � → ∞ for ϕ = 0 as one can find from equation (6c).

Two significant changes are found in equation (10a) compared to equation (9).

(i) Since the modified Fano factor Q is a complex number in general, a transmission zero
does not exist for ε1 �= ε2, unlike the covalent bonding limit.

(ii) The width of the Fano resonance becomes broader due to the difference in energy levels
between the dots:

�′
β = �β + Gb

(�ε)2

�α

. (11)

For a fixed value of �ε, one can find that the broadening of the resonance is significant for
small inter-dot coupling, recalling the relation Gb = 1/(q2 + 1) with q = 4t/�α .

The conductance as a function of Fermi energy for the case of different energy levels is
shown in figure 3. Since �α � �β for ϕ = 0.3π , the conductance shows again the Breit–
Wigner resonance behaviour for the larger energy scale corresponding to the ‘bonding’ state.
The modified Fano resonance can be observed for the ‘antibonding’ state. The imaginary part
of the modified Fano factor increases as the bonding strength becomes stronger, which implies
that the shape of the resonance for the antibonding state varies gradually from the antiresonance
to the Breit–Wigner resonance. One can also verify that the width of the Fano resonance is
broader compared to the case of ε1 = ε2.
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Figure 3. Dimensionless conductance (G) as a function of the Fermi energy (full curves) for
three different values of the inter-dot tunnelling (t/� = 0, 0.2, 1). Other parameters are given
by ε1 = −0.5�, ε2 = 0.5�, ϕ = 0.3π . Long and short dashed curves denote the Breit–Wigner
and generalized Fano asymptote given by equations (8) and (10a), respectively. The generalized
Fano factors for the asymptotes are given by Q = 0.753i, −0.258 + 0.861i, 0.128 + 2.335i for
t/� = 0, 0.2, 1, respectively.

Finally, we discuss the Aharonov–Bohm oscillations of the conductance for the molecular
states and show that information about the bonding properties can be obtained by the oscillation
patterns. As shown in figure 4, the oscillation patterns of the ionic bonding limit are very
different from those of the covalent bonding limit. Above all, the periodicity is 2π in the ionic
bonding limit while it becomes 4π in the covalent bonding limit. This periodicity variation
can be interpreted in terms of the effective coupling strength between the two dots. In the ionic
bonding limit of |�ε| � 2t , the AB oscillation has the usual 2π periodicity since the coupling
between the dots is ineffective. However, in the covalent bonding limit, the coupling between
dots becomes important and this strong effective coupling separates the interferometer into two
sub-regions with their cross-sectional area halved. Therefore the oscillation period is doubled.

Comparing the AB oscillations of the bonding (figure 4(b)) and the antibonding
(figure 4(c)) states, one finds that there are phase differences of 2π between the corresponding
eigenstates. This originates from the difference of the wavefunction symmetry of the two
eigenstates.

It should be noted that our discussions on the AB oscillation characterizing the bonding
properties (ionic, covalent) can be applied only when the two regions divided by the direct
tunnelling have the same area. Though it seems possible to have devices with the same effective
areas from the current nanofabrication technology, the two regions may have different areas
in practice. In this case, the AB oscillations become more complicated and will show a kind
of ‘quantum beating’ originating from the difference in area, which we do not address further
here.

In conclusion, we have investigated resonant tunnelling through the molecular states in
an Aharonov–Bohm interferometer composed of two coupled quantum dots. We have found
that the two resonances are composed of a Breit–Wigner resonance and a Fano resonance, for
which the widths and the Fano factor depend on the AB phase. Further, we have suggested
that the bonding properties and their symmetries can be characterized by the AB oscillation.



Tunable molecular resonances of a double quantum dot Aharonov–Bohm interferometer 123

Figure 4. (a) Molecular two-level energies as a function of the difference between the energy
levels of the quantum dots. (b) AB oscillations for the bonding states with �ε/t = 0 (full curve),
�ε/t = 1/3 (long dashed curve), �ε/t = 1 (short dashed curve) and �ε/t = 10/3 (dotted curve),
marked in (a) as S0, S1, S2 and S3, respectively. (c) AB oscillations for the antibonding states with
�ε/t = 0 (full curve), �ε/t = 1/3 (long dashed curve), �ε/t = 1 (short dashed curve) and
�ε/t = 10/3 (dotted curve), marked in (a) as A0, A1, A2 and A3, respectively.



124 K Kang and S Y Cho

Acknowledgments

We wish to acknowledge H-W Lee for useful discussions and comments. This work has been
supported by the Korean Ministry of Information and Communication.

References

[1] Kastner M A 1993 Phys. Today 46 (1) 24
[2] Kouwenhoven L P, Austing D G and Tarucha S 2001 Rep. Prog. Phys. 64 701
[3] For a review see e.g. van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and

Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[4] van der Vaart N C et al 1995 Phys. Rev. Lett. 74 4702
[5] Yacoby A, Heiblum M, Mahalu D and Shtrikman H 1995 Phys. Rev. Lett. 74 4047
[6] Schuster R, Buks E, Heiblum M, Mahadu D, Umansky V and Shtrikman H 1997 Nature 385 417
[7] Kobayashi K, Aikawa H, Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[8] van der Wiel W G, De Franceschi S, Fujisawa T, Elzerman J M, Tarucha S and Kouwenhoven L P 2000 Science

289 2105
[9] Ji Y, Heiblum M, Sprinzak D, Mahalu D and Shtrikman H 2000 Science 290 779

Ji Y, Heiblum M and Shtrikman H 2002 Phys. Rev. Lett. 88 076601
[10] Gerland U, von Delft J, Costi T A and Oreg Y 2000 Phys. Rev. Lett. 84 3710
[11] Kang K and Shin S-C 2000 Phys. Rev. Lett. 85 5619

Cho S Y, Kang K, Kim C K and Ryu C-M 2001 Phys. Rev. B 64 033314
Kang K, Cho S Y and Park K W 2002 Phys. Rev. B 66 075312
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